Extract, Load & Transform (ELT)
ELT is a data integration method that pulls data from your sources, loads it into a centralized store such as a cloud data warehouse or data lake, then transforms it into analysis‑ready tables. You get raw data available quickly, and you shape it for analysis using the compute power of the destination.
In depth
ELT flips the older ETL order. Instead of transforming data before it lands, you land everything first, then model and clean it in place.
- Extract: Connect to sources such as SaaS apps, databases, files, and event streams. Pull the data on a schedule or near real time.
- Load: Land raw data into your warehouse or lake, often in append‑only tables. Keep history so you can rebuild models when definitions change.
- Transform: Use SQL, dbt, or the warehouse’s native features to join, filter, aggregate, and standardize. Run transformations incrementally to keep costs down and freshness high.
This approach takes advantage of modern warehouses such as Snowflake, BigQuery, and Databricks. Compute scales up when needed, then back down. Teams avoid maintaining a separate transformation server because the work runs inside the destination.
ELT vs ETL
- Order of operations: ELT loads first, then transforms. ETL transforms before the load.
- Speed to data: ELT exposes raw data to analysts sooner, which helps with exploration.
- Governance: ETL can enforce strict rules before data lands. ELT centralizes rules in the warehouse with versioned models.
- When to use: Pick ELT for cloud‑native analytics, variable workloads, and diverse data. Pick ETL for rigid, on‑prem pipelines or when upstream systems demand strict pre‑load validation.
Benefits
- Faster time to analysis since data lands quickly
- Scalability by using warehouse compute for heavy transforms
- Flexibility for new sources and semi‑structured data
- Lower operational overhead by avoiding separate transform infrastructure
- Better lineage and reproducibility through SQL‑based models and version control
Pro tip
Model your business concepts as stable layers. For example, land raw tables, create staging views that standardize fields, then publish clean dimensional tables for metrics. This makes changes safer and keeps dashboards consistent.
Why it matters
For business and data teams, ELT reduces time spent on pipeline maintenance and speeds up decision cycles. You centralize data and definitions, which builds trust. You also create room for advanced use cases such as near real time metrics, anomaly detection, and AI‑assisted transformations as your stack matures.
ELT - In practice
Picture a marketing stack with HubSpot, Google Ads, Meta Ads, and web analytics. You:
- Extract data with a connector service or open‑source tool.
- Load it into a warehouse on a frequent schedule.
- Transform into unified tables such as campaigns, spend, clicks, and conversions with consistent IDs and time zones.
- Expose these tables to your metric layer so teams can track CPA, ROAS, and pipeline created without hunting across tools.
The same pattern fits finance, product, and operations data.
Product‑specific notes
PowerMetrics connects to warehouses and prepares a metric‑centric layer on top of your ELT models. You can:
- Query warehouse tables and views directly
- Bring in modelled data from dbt or a semantic layer such as Cube
- Define consistent metrics once in a shared catalog, then reuse them across dashboards
- Control access and certification so teams trust the numbers
- Refresh on schedules that match your ELT jobs, from every minute to daily
If you’re starting from scratch, point your ELT pipeline at a warehouse, model your core tables, then connect PowerMetrics to publish a governed metric catalog for the business.
Related terms
Data Lake
A data lake is a central repository that stores raw, structured, semi-structured, and unstructured data. Think of it as a data sandbox where you collect everything in its original format until you’re ready to analyze it.
Read moreData Warehouse
A data warehouse is a centralized repository that stores and organizes structured data from multiple sources. It’s optimized for reporting and analysis, enabling businesses to get a unified view of their historical and current data.
Read moreAPI
An API is a contract that defines how to request data or actions from a system, and what will be returned. Think of it like a restaurant menu and order slip. You ask for a dish, the kitchen prepares it, and you get exactly what you asked for.
Read more